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Abstract. We consider the coupled system of nonlinear Schrödinger and Maxwell–Bloch (NLS–
MB) equations, which govern the nonlinear pulse propagation in erbium doped optical fibres. With
the help of the Painlevé singularity structure analysis, we prove the non-existence of optical solitons
in the NLS–MB fibre system in the normal dispersion regime.

1. Introduction

Currently many theoretical works concentrate mainly on the practical feasibility of optical
solitons. One such important system is the coupled version of nonlinear Schrödinger and
Maxwell–Bloch (NLS–MB) equations. Recently many researchers have worked on this,
achieving many results [1–6].

In an optical system, two types of soliton are possible. One is governed by the NLS
equation, which is a balance between the group velocity dispersion (GVD) and the self-phase
modulation (SPM) due to the Kerr nonlinearity in optical fibres. The resulting dynamical
equation for the NLS solitons is of the form [7–10]

qz = iβqtt − iγ |q|2q (1)

where q represents the complex envelope amplitude, t and z are the time and distance along the
direction of propagation, β is the second derivative of the axial wavenumber k with respect to
the angular frequency ω0 and describes the GVD and γ = n2ω0/cAeff is the SPM parameter,
where n2 is the Kerr coefficient, c is the speed of light and Aeff is the effective core area of the
fibre.

The GVD parameter β can take both positive and negative values with respect to the central
frequency of the carrier wave. Hence for positive and negative values of β the fibre system
will be working either in the normal dispersion regime or in the anomalous dispersion regime
respectively. NLS solitons in normal and anomalous dispersion regimes are called dark [8]
and bright solitons [7] respectively.

Dark solitons [11] are generally considered to be less desirable for applications in high-
speed communication systems because of their higher average power and resulting undesirable
effects, such as excitation of stimulated Brillouin back-scattering. On the other hand, bright
solitons have a drawback of fully utilizing the line capacity because of the necessity of keeping
relatively large separations between pulses to avoid accumulation of bit errors. Also, optical
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losses decrease the intensity of the pulse, along with a corresponding increase in the width.
This effect is smaller in the dark-optical-soliton case. It was shown both numerically and
analytically that the time jitter is lower in a dark soliton than in the corresponding bright
soliton [12, 13]. The interactive force between two dark solitons is always repulsive, unlike
the bright-soliton case, and decreases twice as fast as a function of the distance between the
solitons. The separation increases monotonically rather than periodically as in the case of
bright solitons.

The other type of optical soliton is the MB soliton in two-level resonant media. In 1967,
McCall and Hahn [14] explained a special type of lossless pulse propagation in two-level
resonant media (for instance erbium atoms). They showed that if the energy difference between
the two levels of the medium coincides with the optical wavelength, then coherent absorption
takes place. The medium becomes optically transparent to that particular wavelength, called
the self-induced transparency (SIT). MB equations explain the process of SIT. MB equations
take the form [14, 15]

qz = 〈p〉
pt = iωp − f qη

ηt = 2f (qp∗ + q∗p)

(2)

where p and η are given by ν1ν
∗
2 and |ν1|2 −|ν2|2 respectively (ν1 and ν2 are wavefunctions of

two energy levels of erbium atoms) and f describes the character of interaction between the
propagating field and the two-level resonant atoms. The bracketed term 〈· · ·〉 means, averaging
over the entire frequency range,

〈p(z, t; ω)〉 =
∫ ∞

−∞
p(z, t; ω)g(ω) dω∫ ∞

−∞
g(ω) dω = 1

(3)

where g(ω) is the uncertainty in the energy levels of the erbium atoms.
Very recently, Opatrný et al [16] have reported interesting results on dark and bright

solitons in resonantly absorbing gratings, with a different form of the MB equations. Physical
context considered in this article is totally different from the one considered in [16].

If the fibres are doped with erbium atoms, then SIT can also be induced in optical
fibres. This type of soliton pulse propagation was shown for the first time by Maimistov
and Manykin [1] in 1983. Nakazawa et al [17, 18] experimentally observed the coexistence
of NLS solitons and MB solitons in erbium doped resonant fibres. In [19–21], the possibility
of coexistence of the NLS soliton and the MB soliton with some higher-order terms are also
shown. The NLS–MB equations are given by

qz = iβqtt − iγ |q|2q + 〈p〉
pt = iωp − f qη

ηt = 2f (qp∗ + q∗p).

(4)

Here, in this article, we prove the non-existence of the dark optical solitons in the coupled
system of the NLS equation and the MB equations using the Painlevé singularity structure
analysis and, finally, we discuss the impossibility of propagating dark optical solitons in an
erbium doped fibre system governed by the NLS–MB equations.

2. Painlevé analysis

The Painlevé analysis is a powerful method in nonlinear science for establishing the
integrability of a given nonlinear partial differential equation, that is, solutions which are



NLS–MB fibre system 7009

free from movable critical manifolds [22]. This analysis is also useful to derive the parametric
conditions for the integrability of the system equation. Here, we carry out Painlevé analysis
of the NLS–MB equations (4) to derive the condition between the fibre parameters β, γ and
f . Here it is important to mention that the signum of β only determines the type of dispersion
in which the pulse is propagating in optical fibres, so the parametric condition on the signum
of β for the integrability of system equation (4) will help in finding the possibilities for the
existence of dark and bright solitons in NLS–MB fibre systems.

Because of the averaging term 〈p〉, as such, equation (4) cannot be studied from the
Painlevé analysis point of view. Thus for mathematical convenience, the line-shape function
g(ω) in equation (3) is considered to be a Dirac delta function at resonant frequency ω0, so the
averaging function reduces to

〈p(z, t; ω)〉 =
∫ ∞

−∞
p(z, t; ω)δ(ω − ω0) dω

= p(z, t; ω0). (5)

A new set of variables, a (=q), b (=q∗), c (=p), d (=p∗) and e (=η), is introduced
for the purpose of Painlevé singularity structure analysis. Thus, using equations (4) and (5),
a, b, c, d and e can be written as

az = iβatt − iγ a2b + c

bz = −iβqtt + iγ b2a + d

ct = iω0c − f ae

dt = −iω0d − f bd

et = 2f (ac + bd).

(6)

Generalized Laurent series expansions of a, b, c, d and e are

a = φα1

∞∑
j=0

aj (z, t)φ
j

b = φα2

∞∑
j=0

bj (z, t)φ
j

c = φα3

∞∑
j=0

cj (z, t)φ
j

d = φα4

∞∑
j=0

dj (z, t)φ
j

e = φα5

∞∑
j=0

ej (z, t)φ
j

(7)

with a0, . . . , e0 
= 0, where α1, . . . , α5 are negative integers and aj , . . . , ej are a set of
expansion coefficients which are analytic in the neighbourhood of the non-characteristic
singular manifold φ(z, t) = t + φ(z) = 0. Looking at the leading order, a ≈ a0φ

α1 , . . . , e ≈
e0φ

α5 are substituted in equation (6) and, upon balancing dominant terms, the following results
are obtained:

α1 = α2 = −1 α3 = α4 = α5

a0b0 = 2β

γ
and a0d0 = b0c0.

(8)



7010 K Nakkeeran

Substituting full Laurent series and considering leading-order terms alone, we obtain the
following equation:


A −γ a2

0 0 0 0
−γ b2

0 A 0 0 0
f e0 0 j + α3 0 f a0

0 f e0 0 j + α3 f b0

2f d0 2f c0 2f b0 2f a0 −j − α3







aj

bj

cj

dj

ej


 = 0 (9)

where A = β(j − 1)(j − 2) − 2γ a0b0.
On solving equation (9), the resonance values are found to be

j = −1, 0, 3, 4, −α3, −α3 ± 2

√
−2f 2β

γ
. (10)

From careful analysis, we find that equation (10) admits a sufficient number of positive
resonances only for the condition

−2f 2β = γ. (11)

From the dominant terms it is clear that α3 = −2. The resonance value at j = −1 represents
the arbitrariness of the singularity manifold, while resonances at j = 0, 0 are associated with
the arbitrariness of the functions a0, . . . , e0 (as seen in equation (8)). Upon substituting the full
Laurent series of equation (7) in (6) and on collecting the coefficients of different powers of φ

we find that equation (6) admits a sufficient number of arbitrary functions at j = 2, 3, 4, 4 and
hence the system of equation (4) is expected to be integrable for the parametric condition (11).

3. Discussion and conclusion

If we perform the Painlevé analysis for the NLS equation (1), then the corresponding resonances
will be

j = −1, 0, 3, 4 (12)

so we can easily see that there is no parametric condition between β and γ . Hence GVD can
take both positive and negative values, which corresponds to the dark and bright solitons in
pure fibres described by the NLS equation alone.

However, from the Painlevé singularity structure analysis of the NLS–MB equations
it is clear that the NLS–MB fibre system equation is integrable only for the parametric
condition (11). The same condition for deriving the inverse scattering scheme for the NLS–MB
equations has been reported in [1]. Here we have systematically derived that condition from
the Painlevé analysis. From the parametric condition (11) it is clear that the parameters β and
γ has to be of opposite sign. This means that the GVD parameter β has to be negative, which
corresponds to the anomalous dispersion regime. It is a known fact that only a bright soliton
is possible in anomalous dispersion [7]. Hence, from the parametric condition (11), it is clear
that there can be only coexistence of bright solitons in an NLS–MB fibre system.

In an NLS fibre system both bright and dark solitons are possible. For bright and dark
solitons one needs to have a sech and tanh type pulse intensity profile for propagation, but in
two-level resonant media, the MB equation has only the sech type of soliton solution, which
corresponds to the bright one. So the combined system of NLS and MB allows only the sech
type of pulse profile in the erbium doped fibres.

From the phenomenon of SIT also, its is clear that the leading edge of the pulse intensity is
utilized for the population inversion of the two-level system and this is used for the amplification
of the trailing edge of the pulse to propagate as MB solitons. Only sech pulses will allow SIT
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in the two-level media as it has the required profile of leading and trailing edges. This is the
physical reason why only a bright soliton is possible in the coupled NLS–MB fibre system.

We like to stress the following important point regarding the possibility of optical solitons
in the NLS–MB fibre system. From the Painlevé analysis it is clear that the system equation (4)
is integrable only when the parametric condition (11) is satisfied. Hence there is no possibility
of the propagation of both bright and dark optical solitons in the NLS–MB fibre system when
the condition (11) is not satisfied. From the earlier discussions it is also obvious that there is
no possibility of the propagation of dark optical solitons in the NLS–MB fibre system even
when condition (11) is satisfied.

Thus in this article, we have proved the non-existence of dark solitons in the NLS–MB
fibre system with the help of Painlevé analysis.
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